Anosmin-1, Defective in the X-Linked Form of Kallmann Syndrome, Promotes Axonal Branch Formation from Olfactory Bulb Output Neurons
نویسندگان
چکیده
The physiological role of anosmin-1, defective in the X chromosome-linked form of Kallmann syndrome, is not yet known. Here, we show that anti-anosmin-1 antibodies block the formation of the collateral branches of rat olfactory bulb output neurons (mitral and tufted cells) in organotypic cultures. Moreover, anosmin-1 greatly enhances axonal branching of these dissociated neurons in culture. In addition, coculture experiments with either piriform cortex or anosmin-1-producing CHO cells demonstrate that anosmin-1 is a chemoattractant for the axons of these neurons, suggesting that this protein, which is expressed in the piriform cortex, attracts their collateral branches in vivo. We conclude that anosmin-1 has a dual branch-promoting and guidance activity, which plays an essential role in the patterning of mitral and tufted cell axon collaterals to the olfactory cortex.
منابع مشابه
Anosmin-1 underlying the X chromosome-linked Kallmann syndrome is an adhesion molecule that can modulate neurite growth in a cell-type specific manner.
Anosmin-1 is an extracellular matrix glycoprotein which underlies the X chromosome-linked form of Kallmann syndrome. This disease is characterized by hypogonadism due to GnRH deficiency, and a defective sense of smell related to the underdevelopment of the olfactory bulbs. This study reports that anosmin-1 is an adhesion molecule for a variety of neuronal and non-neuronal cell types in vitro. W...
متن کاملAnosmin - 1 a is required for fasciculation and
The KAL-1 gene underlies the X-linked form of Kallmann syndrome (KS), a neurological disorder that impairs the development of the olfactory and GnRH systems. KAL-1 encodes anosmin-1, a cell matrix protein that shows cell adhesion, neurite outgrowth, and axon-guidance and -branching activities. We used zebrafish embryos as model to better understand the role of this protein during olfactory syst...
متن کاملThe terminal nerve plays a prominent role in GnRH-1 neuronal migration independent from proper olfactory and vomeronasal connections to the olfactory bulbs
Gonadotropin-releasing hormone-1 (GnRH-1) neurons (GnRH-1 ns) migrate from the developing olfactory pit into the hypothalamus during embryonic development. Migration of the GnRH-1 neurons is required for mammalian reproduction as these cells control release of gonadotropins from the anterior pituitary gland. Disturbances in GnRH-1 ns migration, GnRH-1 synthesis, secretion or signaling lead to v...
متن کاملKallmann Syndrome Adhesion, Afferents, and Anosmia
Three new studies into the function of human anosmin-1 and related proteins in C. elegans and rodents show that these influence axon branching and axon targeting. The rodent anosmin appears to work at two stages of development, initially promoting axon outgrowth from the olfactory bulb and then stimulating branching from axons into the olfactory cortex. CeKal-1 further influences morphogenesis,...
متن کاملThe product of X-linked Kallmann's syndrome gene (KAL1) affects the migratory activity of gonadotropin-releasing hormone (GnRH)-producing neurons.
X-linked Kallmann's syndrome (KS) is a genetic disease characterized by anosmia and hypogonadism due to impairment in the development of olfactory axons and in the migration of gonadotropin-releasing hormone (GnRH)-producing neurons. Deletions or point mutations of a gene located at Xp22.3 (KAL1) are responsible for the disease. This gene encodes for a secreted heparin-binding protein (KAL or a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 109 شماره
صفحات -
تاریخ انتشار 2002